FLETCHER HIGH SCHOOL **SUMMER REVIEW PACKET**

For students entering PreAP PRECALCULUS

Name:				

- This packet is to be handed in to your Precalculus teacher on the first day of the school 1. year.
- All work must be shown in the packet OR on separate paper attached to the packet. Completion of this packet will be counted toward your first quarter grade. 2.
- 3.

Summer Review Packet for Students Entering PreAP Precalculus

Radicals:

To simplify means that 1) no radicand has a perfect square factor and

2) there is no radical in the denominator (rationalize).

Recall – the **Product Property** $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ and the **Quotient Property** $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Examples: Simplify $\sqrt{24} = \sqrt{4} \cdot \sqrt{6}$ find a perfect square factor $= 2\sqrt{6}$ simplify

Simplify $\sqrt{\frac{7}{2}} = \frac{\sqrt{7}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$ split apart, then multiply both the numerator and the denominator by $\sqrt{2}$

denominator by $\sqrt{2}$ $= \frac{\sqrt{14}}{\sqrt{4}} = \frac{\sqrt{14}}{2}$ multiply straight across and simplify

If the denominator contains 2 terms – multiply the numerator and the denominator by the *conjugate* of the denominator The *conjugate* of $3 + \sqrt{2}$ is $3 - \sqrt{2}$ (the sign changes between the terms).

Simplify each of the following.

1.
$$\sqrt{32}$$

2.
$$\sqrt{(2x)^8}$$

3.
$$\sqrt[3]{-64}$$

4.
$$\sqrt{49m^2n^8}$$

5.
$$\sqrt{\frac{11}{9}}$$

6.
$$(\sqrt{5} - \sqrt{6})(\sqrt{5} + \sqrt{2})$$

Rationalize.

$$7. \ \frac{1}{\sqrt{2}}$$

$$8. \quad \frac{3}{2-\sqrt{5}}$$

Complex Numbers:

Form of complex number - a + bi

Where a is the "real" is part and bi is the "imaginary" part

Always make these substitutions $\sqrt{-1} = i$ and $i^2 = -1$

• To simplify: pull out the $\sqrt{-1}$ before performing any operation

Example: $\sqrt{-5} = \sqrt{-1} \cdot \sqrt{5}$ Pull out $\sqrt{-1}$ Example: $(i\sqrt{5})^2 = i\sqrt{5} \cdot i\sqrt{5}$ List twice $= i^2\sqrt{25}$ Simplify = (-1)(5) = -5 Substitute

• Treat i like any other variable when +, -, \times , or \div (but always simplify $i^2 = -1$)

Example: 2i(3+i) = 2(3i) + 2i(i) Distribute $= 6i + 2i^2$ Simplify = 6i + 2(-1) Make substitution = -2 + 6i Simplify and rewrite in complex form

• Since $i = \sqrt{-1}$, no answer can have an 'i' in the denominator **RATIONALIZE!!**

Simplify.

9.
$$\sqrt{-49}$$

10.
$$6\sqrt{-12}$$

11.
$$-6(2-8i)+3(5+7i)$$

12.
$$(3-4i)^2$$

13.
$$(6-4i)(6+4i)$$

Rationalize.

$$14. \ \frac{1+6i}{5i}$$

Geometry:

Pythagorean Theorem (right triangles): $a^2 + b^2 = c^2$

Find the value of x.

15.

16.

18. A square has perimeter 12 cm. Find the length of the diagonal.

* In $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangles, sides are in proportion $1, \sqrt{3}, 2$.

60° 1 30° $\sqrt{3}$

*In 45° – 45° – 90° triangles, sides are in proportion $1,1,\sqrt{2}$.

Solve for x and y.

19.

20.

21.

22.

Equations of Lines:

Slope intercept form: y = mx + b

Vertical line: x = c (slope is undefined)

Point-slope form: $y - y_1 = m(x - x_1)$

Horizontal line: y = c (slope is 0)

Standard Form: Ax + By = C

Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$

23. State the slope and y-intercept of the linear equation: 5x - 4y = 8.

24. Find the x-intercept and y-intercept of the equation: 2x - y = 5

25. Write the equation in standard form: y = 7x - 5

Write the equation of the line in slope-intercept form with the following conditions:

26. slope = -5 and passes through the point (-3, -8)

27. passes through the points (4, 3) and (7, -2)

28. x-intercept = 3 and y-intercept = 2

Graphing:

Graph each function, inequality, and / or system.

29.
$$3x-4y=12$$

30.
$$\begin{cases} 2x + y = 4 \\ y = 2 \end{cases}$$

31.
$$y < -4x - 2$$

32.
$$y+2=|x+1|$$

33.
$$y > |x| - 1$$

34.
$$y+4=(x-1)^2$$

Vertex:

x-intercept(s):

y-intercept(s):

Systems of Equations:

$$3x + y = 6$$

$$2x - 2y = 4$$

Substitution:

Solve 1 equation for 1 variable.

Rearrange. Plug into 2nd equation.

Solve for the other variable.

Elimination:

Find opposite coefficients for 1 variable.

Multiply equation(s) by constant(s).

Add equations together (lose 1 variable).

Solve for variable.

Then plug answer back into an original equation to solve for the 2nd variable.

$$y = 6 - 3x$$
 solve 1st equation for y

$$2x - 2(6 - 3x) = 4$$

plug into 2nd equation

$$2x - 12 + 6x = 4$$

distribute simplify

$$8x = 16$$

$$2x - 2y = 4$$

6x + 2y = 12 multiply 1st equation by 2 2x - 2y = 4 coefficients of y are opposite

$$8x = 16$$

x = 2

add simplify

$$x = 2$$

$$3(2) + y = 6$$

Plug
$$x = 2$$
 back into original $6 + y = 6$

$$y = 0$$

Solve each system of equations. Use any method.

35.
$$\begin{cases} 2x + y = 4 \\ 3x + 2y = 1 \end{cases}$$

$$36. \begin{cases} 2x + y = 4 \\ 3x - y = 14 \end{cases}$$

37.
$$\begin{cases} 2w - 5z = 13 \\ 6w + 3z = 10 \end{cases}$$

Exponents:

TWO RULES OF ONE

1.
$$a^1 = a$$

Any number raised to the power of one equals itself.

2.
$$1^a = 1$$

One to any power is one.

ZERO RULE

3.
$$a^0 = 1$$

Any nonzero number raised to the power of zero is one.

PRODUCT RULE

4.
$$a^m \cdot a^n = a^{m+n}$$

When multiplying two powers that have the same base, add the exponents.

QUOTIENT RULE

5.
$$\frac{a^m}{a^n} = a^{m-n}$$

When dividing two powers with the same base, subtract the exponents.

POWER RULE

$$\overline{6.(a^m)^n = a^{m \cdot n}}$$

When a power is raised to another power, multiply the exponents.

NEGATIVE EXPONENTS

7.
$$a^{-n} = \frac{1}{a^n}$$
 and $\frac{1}{a^{-n}} = a^n$

Any nonzero number raised to a negative power equals its reciprocal raised to the opposite positive power.

8

Express each of the following in simplest form. Answers should not have any negative exponents.

38.
$$5a^0$$

39.
$$\frac{3c}{c^{-1}}$$

40.
$$\frac{2ef^{-1}}{e^{-1}}$$

40.
$$\frac{2ef^{-1}}{e^{-1}}$$
 41. $\frac{(n^3p^{-1})^2}{(np)^{-2}}$

Simplify.

42.
$$3m^2 \cdot 2m$$

43.
$$(a^3)^2$$

44.
$$(-b^3c^4)^5$$

44.
$$(-b^3c^4)^5$$
 45. $4m(3a^2m)$

Polynomials:

To add / subtract polynomials, combine like terms.

EX:
$$8x-3y+6-(6y+4x-9)$$

Distribute the negative through the parantheses.

Combine terms with similar variables.

$$= 8x - 3y + 6 - 6y - 4x + 9$$

$$= 8x - 4x - 3y - 6y + 6 + 9$$

$$=4x-9y+15$$

Simplify.

46.
$$3x^3 + 9 + 7x^2 - x^3$$

47.
$$7m-6-(2m+5)$$

To multiplying two binomials, use FOIL.

EX:
$$(3x-2)(x+4)$$

Multiply the first, outer, inner, then last terms.

$$=3x^2+12x-2x-8$$
 Combine like terms.

$$=3x^2+10x-8$$

Multiply.

48.
$$(3a+1)(a-2)$$

49.
$$(s+3)(s-3)$$

50.
$$(c-5)^2$$

51.
$$(5x + 7y)(5x - 7y)$$

Factoring.

Follow these steps in order to factor polynomials.

STEP 1: Look for a GCF in ALL of the terms.

- a.) If you have one (other than 1) factor it out front.
- b.) If you don't have one, move on to STEP 2.

STEP 2: How many terms does the polynomial have?

2 Terms

a.) Is it difference of two squares? $a^2 - b^2 = (a+b)(a-b)$

EX:
$$x^2 - 25 = (x+5)(x-5)$$

b.) Is it sum or difference of two cubes? $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$ $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$

EX:
$$m^3 + 64 = (m+4)(m^2 - 4m + 16)$$

 $p^3 - 125 = (p-5)(p^2 + 5p + 25)$

3 Terms

$$x^{2} + bx + c = (x +)(x +)$$
 Ex: $x^{2} + 7x + 12 = (x + 3)(x + 4)$

$$x^{2} - bx + c = (x -)(x -)$$
 $x^{2} - 5x + 4 = (x - 1)(x - 4)$

$$x^{2} + bx - c = (x -)(x +)$$
 $x^{2} + 6x - 16 = (x - 2)(x + 8)$

$$x^{2}-bx-c=(x-1)(x+1)$$
 $x^{2}-2x-24=(x-6)(x+4)$

4 Terms -- Factor by Grouping

- a.) Pair up first two terms and last two terms
- b.) Factor out GCF of each pair of numbers.
- c.) Factor out front the parentheses that the terms have in common.
- d.) Put leftover terms in parentheses.

Ex:
$$x^3 + 3x^2 + 9x + 27 = (x^3 + 3x^2) + (9x + 27)$$

= $x^2(x+3) + 9(x+3)$
= $(x+3)(x^2+9)$

Factor completely.

$$52. z^2 + 4z - 12$$

53.
$$6-5x-x^2$$

10

54.
$$2k^2 + 2k - 60$$

55.
$$-10b^4 - 15b^2$$

56.
$$9c^2 + 30c + 25$$

$$57. 9n^2 - 4$$

58.
$$27z^3 - 8$$

59.
$$2mn - 2mt + 2sn - 2st$$

To solve quadratic equations, try to factor first and set each factor equal to zero. Solve for your variable. If the quadratic does NOT factor, use quadratic formula.

EX:
$$x^2 - 4x = 21$$

Set equal to zero FIRST.

$$x^2 - 4x - 21 = 0$$
 Now factor.

$$(x+3)(x-7) = 0$$

Set each factor equal to zero.

$$x + 3 = 0$$

x + 3 = 0 x - 7 = 0 Solve each for x.

$$x = -3$$
 $x = 7$

Solve each equation.

60.
$$x^2 - 4x - 12 = 0$$

61.
$$x^2 + 25 = 10x$$

62.
$$x^2 - 14x + 40 = 0$$

DISCRIMINANT: The number under the radical in the quadratic formula $(b^2 - 4ac)$ can tell you what kinds of roots you will have.

IF $b^2 - 4ac > 0$ you will have TWO real roots. (touches x-axis twice)

IF $b^2 - 4ac = 0$ you will have ONE real root

(touches the x-axis once)

IF $b^2 - 4ac < 0$ you will have TWO imaginary roots. (Graph does not cross the x-axis)

QUADRATIC FORMULA – allows you to solve any quadratic for all its real and imaginary

$$\mathbf{roots.} \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

EX: Solve the equation:
$$x^2 + 2x + 3 = 0$$

Solve:
$$x = \frac{-2 \pm \sqrt{-8}}{2}$$
$$x = \frac{-2 \pm 2i\sqrt{2}}{2}$$
$$x = -1 \pm i\sqrt{2}$$

Solve each quadratic. Use EXACT values.

63.
$$x^2 - 9x + 14 = 0$$

64.
$$5x^2 - 2x + 4 = 0$$

Long Division – can be used when dividing any polynomials. Synthetic Division - can ONLY be used when dividing a polynomial by a linear (degree one) polynomial.

EX:
$$\frac{2x^3 + 3x^2 - 6x + 10}{x + 3}$$

Synthetic Division

$$\frac{2x^{3} + 3x^{2} - 6x + 10}{x + 3}$$

$$\frac{-3}{4} \quad 2 \quad 3 \quad -6 \quad 10$$

$$\frac{1}{4} \quad -6 \quad 9 \quad -9$$

$$\frac{1}{4} \quad -6 \quad 3 \quad 1$$

$$\frac{1}{4} \quad -3 \quad 3 \quad 1$$

Divide each polynomial using long division OR synthetic division.

65.
$$\frac{c^3 - 3c^2 + 18c - 16}{c^2 + 3c - 2}$$

$$66. \ \frac{x^4 - 2x^2 - x + 2}{x + 2}$$

To evaluate a function for a given value, simply plug the value into the function for x.

Evaluate each function for the given value.

67.
$$f(x) = x^2 - 6x + 2$$

68.
$$g(x) = 6x - 7$$

68.
$$g(x) = 6x - 7$$
 69. $f(x) = 3x^2 - 4$

$$g(x+h) = \underline{\hspace{1cm}}$$

13

$$5\lceil f(x+2)\rceil = \underline{\hspace{1cm}}$$

Composition and Inverses of Functions:

Recall: $(f \circ g)(x) = f(g(x))$ OR f[g(x)] read "f of g of x" Means to plug the inside function (in this case g(x)) in for x in the outside function (in this case, f(x)).

Example: Given $f(x) = 2x^2 + 1$ and g(x) = x - 4 find f(g(x)).

$$f(g(x)) = f(x-4)$$

$$= 2(x-4)^{2} + 1$$

$$= 2(x^{2} - 8x + 16) + 1$$

$$= 2x^{2} - 16x + 32 + 1$$

$$f(g(x)) = 2x^{2} - 16x + 33$$

Suppose f(x) = 2x, g(x) = 3x - 2, and $h(x) = x^2 - 4$. Find the following:

70.
$$f[g(2)] =$$

71.
$$f[g(x)] = \underline{\hspace{1cm}}$$

72.
$$f[h(3)] =$$

73.
$$g[f(x)] =$$

To find the inverse of a function, simply switch the x and the y and solve for the new "y" value. **Example:**

$$f(x) = \sqrt[3]{x+1}$$
 Rewrite $f(x)$ as y
 $y = \sqrt[3]{x+1}$ Switch x and y
 $x = \sqrt[3]{y+1}$ Solve for your new y
 $(x)^3 = (\sqrt[3]{y+1})^3$ Cube both sides
 $x^3 = y+1$ Simplify
 $y = x^3 - 1$ Solve for y
 $f^{-1}(x) = x^3 - 1$ Rewrite in inverse notation

Find the inverse, $f^{-1}(x)$, if possible.

74.
$$f(x) = 5x + 2$$

75.
$$f(x) = \frac{1}{2}x - \frac{1}{3}$$

Rational Algebraic Expressions:

Multiplying and Dividing.

Factor numerator and denominator completely. Cancel any common factors in the top and bottom. If dividing, change divide to multiply and flip the second fraction.

$$\frac{x^2 + 10x + 21}{5 - 4x - x^2} \bullet \frac{x^2 + 2x - 15}{x^3 + 4x^2 - 21x}$$
 Factor everything completely.

$$= \frac{(x+7)(x+3)}{(5+x)(1-x)} \bullet \frac{(x+5)(x-3)}{x(x-3)(x+7)}$$

Cancel out common factors in the top and bottom.

$$=\frac{(x+3)}{x(1-x)}$$
 Simplify.

Simplify.

$$76. \ \frac{5z^3 + z^2 - z}{3z}$$

77.
$$\frac{m^2 - 25}{m^2 + 5m}$$

78.
$$\frac{10r^5}{21s^2} \bullet \frac{3s}{5r^3}$$

79.
$$\frac{a^2 - 5a + 6}{a + 4} \bullet \frac{3a + 12}{a - 2}$$

80.
$$\frac{6d-9}{5d+1} \div \frac{6-13d+6d^2}{15d^2-7d-2}$$

Addition and Subtraction.

First, find the least common denominator.

Write each fraction with the LCD.

Add / subtract numerators as indicated and leave the denominators as they are.

EX:
$$\frac{3x+1}{x^2+2x} + \frac{5x-4}{2x+4}$$

Factor denominator completely.

$$= \frac{3x+1}{x(x+2)} + \frac{5x-4}{2(x+2)}$$

Find LCD (2x)(x+2)

$$= \frac{2(3x+1)}{2x(x+2)} + \frac{x(5x-4)}{2x(x+2)}$$

Rewrite each fraction with the LCD as the denominator.

$$=\frac{6x+2+5x^2-4x}{2x(x+2)}$$

Write as one fraction.

$$=\frac{5x^2 + 2x + 2}{2x(x+2)}$$

Combine like terms.

81.
$$\frac{2x}{5} - \frac{x}{3}$$

$$82. \ \frac{b-a}{a^2b} + \frac{a+b}{ab^2}$$

83.
$$\frac{2-a^2}{a^2+a} + \frac{3a+4}{3a+3}$$

Complex Fractions.

Eliminate complex fractions by multiplying the numerator and denominator by the LCD of each of the small fractions. Then simplify as you did above

EX:

$$\frac{1+\frac{1}{a}}{\frac{2}{a^2}-1}$$

Find $LCD: a^2$

$$=\frac{\left(1+\frac{1}{a}\right) \cdot a^2}{\left(\frac{2}{a^2}-1\right) \cdot a^2}$$

Multiply top and bottom by LCD.

$$=\frac{a^2+a}{2-a^2}$$

Factor and simplify if possible.

$$=\frac{a(a+1)}{2-a^2}$$

84.
$$\frac{1-\frac{1}{2}}{2+\frac{1}{4}}$$

$$85. \quad \frac{1+\frac{1}{z}}{z+1}$$

$$86. \ \frac{5 + \frac{1}{m} - \frac{6}{m^2}}{\frac{2}{m} - \frac{2}{m^2}}$$

$$87. \ \frac{2 + \frac{1}{x} - \frac{1}{x^2}}{1 + \frac{4}{x} + \frac{3}{x^2}}$$

Solving Rational Equations:

Multiply each term by the LCD of all the fractions. This should eliminate all of your fractions. Then solve the equation as usual.

$$\frac{5}{x+2} + \frac{1}{x} = \frac{5}{x}$$

Find LCD first. x(x+2)

$$x(x+2)\left(\frac{5}{x+2}\right) + x(x+2)\left(\frac{1}{x}\right) = \left(\frac{5}{x}\right)x(x+2)$$
 Multiply each term by the LCD.

$$5x + 1(x + 2) = 5(x + 2)$$

Simplify and solve.

$$5x + x + 2 = 5x + 10$$

$$6x + 2 = 5x + 10$$

EX: $x = 8 \iff Check \ your \ answer. \ Sometimes \ they \ do \ not \ check!$

Check:

$$\frac{5}{8+2} + \frac{1}{8} = \frac{5}{8}$$

$$\frac{5}{10} + \frac{1}{8} = \frac{5}{8}$$

$$\frac{5}{8} = \frac{5}{8}$$

Solve each equation. Check your solutions.

$$88. \ \frac{12}{x} + \frac{3}{4} = \frac{3}{2}$$

$$89. \ \frac{x+10}{x^2-2} = \frac{4}{x}$$

90.
$$\frac{X}{5} = \frac{x}{x-5} - 1$$

Logarithms

$$y = \log_a x$$
 is equivalent to $x = a^y$

Product property:
$$\log_b mn = \log_b m + \log_b n$$

Quotient property:
$$\log_b \frac{m}{n} = \log_b m - \log_b n$$

Power property:
$$\log_b m^p = p \log_b m$$

Property of equality: If
$$\log_b m = \log_b n$$
, then $m = n$

Change of base formula:
$$\log_a n = \frac{\log_b n}{\log_b a}$$

Solve each equation. Check your solutions.

91.
$$2(3)^{2x} = 5$$

92.
$$5\log(x-2)=11$$

93.
$$12 = 10^{x+5} - 7$$

94.
$$\ln x + \ln(x-2) = 1$$
 95. 3 $+ \ln x = 8$

95. 3
$$+1$$
 n $x = 8$

$$3e^{-x} - 4 = 9$$